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Madison Project "Experimental Course Reports"
are intended to communicate to the profession
mathematicians, teachers, authors, publishers, and
so onat the earliest possible moment on the Project's

exploratory curriculum work. By reporting as early

as possible the Project can invite general professional

participation and criticism in the planned evolution

of school mathematics. At the same time, early report-

ing means, of course, that what is contained herein is

a record of successes, guesses, uncertainties, and
mistakes. The advantage of accumulating hindsight

will surely dictate revisions in the curriculum sug-
gestions which are presented in this report.
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The Madison Project, a curriculum development
project of Syracuse University and Webster Col-
lege, has, for the past seven years, been engaged
in developing mathematics curriculum ideas and
materials for kindergarten through grade 10, and
for college courses. The most fully-developed por-
tions of this curriculum provide a supplementary
program in modern algebra, logic, and geometry
for grades 2 through 8; this material is presented
in four books, and in a sequence of films (cf.

Appendix A).

At two grade levels the Madison Project program
is not supplementary, but forms instead the entire
mathematics program for that grade. This occurs
at the kindergarten level (because there was no
pre-existing established program at this level),
and in grade 9, where a complete and unified
course is a reasonable expectation.

During the academic year 1963-1964, a 9th grade
class of 31 students at Nerinx Hall High School, a
Catholic high school in Webster Groves, Missouri,
was taught jointly by Professor Robert B. Davis
of Syracuse University, and by Sister Francine,
S.L., of the Nerinx faculty.

The present report is concerned solely with that
portion of the course taught by Professor Davis.
As discussed above, this was intended to be the
entire course, but could not be, due to a schedule
of out-of-town commitments that required Pro-
fessor Davis to be away from the Nerinx campus
about 30% of the time. During Professor Davis's

C) 0:;J- r;,,

absences, the class was taught by Sister Francine,
generally according to the contents of the 9th
grade algebra book ordinarily used at Nerinx,
namely

Dolciani, Berman, and Freilich, Modern
Algebra: Structure and Method. Book I,
Houghton Mifflin Co., Boston, 1962.

The school is an all-girl school, containing (in one
building) grades 9-12. Since the students had at-
tended grades K-8 elsewhere, their backgrounds
were diverse. It was assumed that none of them
had had any previous contact with "modern"
school mathematics curricula, and this was an
appropriate assumption in nearly all cases.

Because of the presence of Sister Francine's por-
tion of the course, it could be assumed that all
essential parts of the "traditional" ninth-grade
program were included, although they might not
appear in the present report. This does not con-
tradict the assertion that the experimental ninth-
grade course outlined here is not merely supple-
mentary, but is intended to become the basic
ninth-grade course. Indeed, one might say that
the "traditional" topics were supplementary to the

modern portion of the course. That such a hap-
hazard arrangement produced an adequately ar-
ticulated course is due to the wisdom and flexibility
of Sister Francine, and to the ninth-grade students
themselves. To both, the author wishes to re-
affirm his deepest thanks.
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To discuss the reason for developing a new ninth-
grade mathematics course, we might consider first
the "traditional" ninth-grade algebra course which
we sought to replace.

The four outstanding attributes of the "tradi-
tional" ninth-grade "algebra" course were prob-
ably these:

1. The students experienced a long sequence of
pedestrian intellectual tasks which were hardly
capable of inspiring enthusiasm or commit-
ment, nor of calling forth any sustained, original,
and creative effort.

2. The course was intended to cause the student
to become able to write an apparently correct
mathematical statement, without the need for
understanding what he had written.

3. The pace of the course was remarkably slow,
and greatly underestimated the potential ability
of most students.

4. The student was cast in the passive role of
listener, or the merely responsive role of a
subject being trained or conditioned. Presum-
ably for this reason, the students actually
adopted a passive habit of mind, did not avidly
grasp out for knowledge and understanding,
and did not learn satisfactorily.

Three points may be left to stand without further
comment here, but the second point deserves
some discussion.

The "traditional" ninth-grade "algebra" course
was so preoccupied with written symbols that it
might have been called a course for typesetters,

1 For a comparison with other "modern" ninth-grade
courses, see Section VII of this report.

6

not for mathematicians. Notice, for example, the
preoccupation with written symbolism indicated
even in the usual vocabulary: "removing paren-
theses," "changing signs," "inverting," "sim-
plifying," "multiplying out," "canceling," "trans-
posing," "combining like terms," and so on.

On the other hand, a statement was traditionally
written with a mystical optimism concerning the
efficacy of notation, but with no concern as to
whether it was true, false, open, of presently
unknown truth value, implied by the preceding
statement, contradicted by the preceding state-
ment, capable of implying the following statement,
logically equivalent to the following statement, or
whatever. It was merely written. Mathematics
thereby achieved the appearance of consisting of
a sequence of written sta cements related by no
logical structure that anyone cared to talk about,
and describing no identifiable mathematical en-
tities whatsoever. The name became substituted
for the thing named. The student who could write

had somehow penetrated the absolute depths of
irrational numbers by the simple act of writing
a radical, without the need to consider the theory
of limits of infinite sequences or any of the other
conceptual paraphernalia which seems to be re-
quired by those who choose to think as well
as to write.

It is interesting to note that observers of our
"new" ninth-grade mathematics class have spon-
taneously remarked upon the fact that the ratio
of discussions to writing during class was far
higher than usual.

Axioms. We chose to develop an axiomatic ap-
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proach to algebra primarily for two reasons: first,
any game is more intelligible and more fun if one
is allowed to know in advance what the rules are,
and, second, an axiomatic approach is capable of
showing the man-made choices by which the de-
velopment of our mathematical structures is
shaped. Indeed, the multiplicity of mathematical
structures is revealed far more clearly by an
axiomatic approach.

"Clean" Mathematics. The ninth-grade course de-
veloped by S.M.S.G.,2 or the axiomatic algebra
which appears at the beginning of Moise's Ele-
mentary Geometry from an Advanced Standpoint,'
appeal to us as fine examples of "clean" mathe-
matics, honest, intelligible, and free from murky
discussions of things which are ill-defined. We
shall not attempt to describe this attribute of
"clean-ness" with any precision. We do not mean
to deny the important role of intuition, nor do
we deny the value of intuitively "sensible" efforts
whose precise content becomes revealed only later,
after they have proved fruitful. We do mean the
avoidance of that murkiness which is not even
based upon sound intuition, which has an "out-
of-focus" fuzziness that cannot be excised, and
which may even be self-contradictory. An actual
example, from a "traditional" course, is:

The absolute value of a number is the numerical
value of the number, without regard to its

2 School Mathematics Study Group, First Course in Alge-
bra, Part I and Pazt II, Teacher's Commentary, and Part I
and Part II, Student's Text, Yale University Press,
1961.

3 Edwin Moise, Elementary Geometry from an Advanced
Standpoint, Addison-Wesley Publishing Co., Inc., Read-
ing, Massachusetts, 1963.
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condition or sign. Absolute value is neither
positive nor negative.

The Various A spects of Mathematics. Although
our course was to be primarily a "clean," abstract,
axiomatic approach to the algebra of real num-
bers, we recognize that mathematics has many
faces, and is seen differently by pure mathe-
maticians, applied mathematicians, statisticians,
theoretical physicists, experimental physicists, en-
gineers, actuaries, behavioral scientists, logicians,
philosophers, lawyers, -and so on. Each of these
visions has some validity, as their historical sur-
vival surely indicates, and as the varied futures of
our students forces us to acknowledge. While
70%, or so, of our course was abstract axiomatic
algebra, the remaining portion included intuitive
mathematics for which a careful foundation was
not available, it included a brief consideration of
problems of measurement and scientific model
building in an actual iaboratory situation, it made
some use of engineering drawing and descriptive
geometry, it dealt with empirical probability, it
opened the door for future study in mathematical
logic, and it included consideration of some rele-
vant (and revealing) portions of the history of
mathematics. The hope was to win as many
converts as possible, with due regard for variations
among our students.

Limits, Cartesian Co-ordinates, and Matrices. We
wished to include three areas of mathematics not
commonly found in grade nine, namely the theory
of limits of infinite sequences, a frequent (one
might say ubiquitous) use of Cartesian co-
ordinates, and a nearly-ubiquitous appeal to the
algebra of matrices. These topics are discussed
in more detail below.



The course is not adequately described by a mere
list of topics included, but such a list provides a
good starting point. Here it is:

1. True statements, false statements, open sentences

2. Truth sets

3. Variables

4. Functions

5. Graphs of Truth Sets and of Functions

6. Mathematics in the Laboratory: Problems
of Measurement

7. Mathematics in the Laboratory: Making
Scientific Models

8. Descriptive Statistics: Average, Variance, Range,
"Trimmed" Range, Standard Deviation

9. Empirical Probability

10. Implication, Contradiction, Uniqueness,
Truth Tables, Inference Schemes, Mappings of
Cartesian Products of Truth-Value Spaces

11. Identities

12. Quantifiers

13. "Shortening Lists" of Identities by Using Implication

14. More Careful Formulation of 13

15. Axioms and Theorems

/6. Axioms for the Non-Negative Integers

17. Axioms for the Integers

18. Axioms for Rational Numbers

19. The Algebra of Matrices

20. Models of Axiom Systems (Matrices, Finite Fields,
Rational Numbers, etc.)

L

21. Order Axioms

22. The General Quadratic Equation

23. Simultaneous Equations

24. Iso morp hip m

25. Linearity, Convexity

26. Transformations or "Mappings"

27. Identities Involving the Distance Function d(p,q)

28. Right-Angle Trigonometry

29. Extension of Definitions (in Various Contexts,
Including Page's "Lattices," Exponents, Factorials,
Trig Functions, etc.)

30. Trigonometric Identities

31. Complex Numbers via Matrices

32. The Complex Plane

33. The Greek Vi Paradox

34. Infinite Sequences, Monotonicity, Convergenco

35. Axioms for the Real Number System

The way in which this bare list of "topics" was
expanded into a sequence of actual learning experi-
ences-i.e., into a "course"-is described in the
remaining portions of this report.

Incidentally, three topics-Mathematical
Induction, Finite Difference Methods, and
Archimedean Sums (for "Definite Integrals")-
which we had originally hoped to include had to
be omitted for lack of time.

8
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This was not a lecture course.

One of the key pedagogical ideas underlying this
course is the idea of active, creative, original

student participation. The students measure
things in a laboratory, and discuss their results.
The students choose sets of axioms, and the
teacher argues with them about limitations of their
chosen set. The teacher accepts "wrong" answers
and waits for some students to challenge them.

Just how much direction the teacher injects is a
subtle question which we shall not discuss here in
detail. In general, the teacher seeks to avoid aim-
less chaos, but does not avoid controversy, nor
does he quickly resolve issues. Where possible, he

leaves open questions open, for gradual resolution
by the students, often over a period of many
weeks (provided, as in the case of the Greek
paradox, that the matter is sufficiently important
to deserve such sustained interest). 1

Perhaps the pedagogical aspects of the course are
best revealed by viewing the films which were
made during the 1963-1964 academic year, and
which show actual classroom lessons. For a listing
of these films, consult Appendix D of this report.

Reference here might be made to the concept of "demand
quality" of Wolfgang Köhler, or the "tensions" of
Kurt Lewin.

.113=Riliut



Prior to the 1963-1964 academic year, and prior
to the present ninth-grade course experiment, the
Madison Project had made a number of 16mm.
sound films showing actual classroom mathematics
lessons in grades two through eight. Many of these
films dealt with topics which appear in the present
ninth-grade course. These films were, of course,
intended for teacher training, and are normally
used in this way. They are not ordinarily shown
to students.

For the present ninth-grade course we made an
exception, and experimented with having the
students view a few of these films, as specific
mathematics learning experiences, rather than as
films on pedagogy. Such use of the films appears to
have one considerable strength: we wish to present
mathematics as an on-going human creation. The
films help to do this; in the filmed lesson, problems
are posed, and students make up methods for attack-
ing the problems. The methods are often named after
the student who discovered them, are extended and
generalized where appropriate, and are added to the
student's future store of weapons for attacking future
problems. There is no doubt as to where the methods
came from, or why they were developed.

In a sense, this approach brings the history of
mathematics right into the classroom, and lets
each student live through important pieces of
mathematical history. A "historical break-

L.-)f g r [1, P.
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through" becomes something that the student
knows from first-hand experience.

This point of view was maintained with the
historical development of mathematics by the
Nerinx ninth-graders, and it could be clearly
observed in the parallel historical development of
mathematics by the students in the films. The
important thing was that the "live" ninth-grade
elass and the filmed lessons shared a consistent
point of view concerning the development of
mathematics.

Films giving an a-historical and authoritarian
presentation of mathematics would not be con-
sistent with this approach. Perhaps for this reason,
the Project has never made such films. However,
films giving a "problem-to-solution" approach,
with all of the exploration, wrong turnings, and
gradual accumulation of concepts and techniques,
are not inconsistent with the actual development
of mathematical systems as an on-going human
activity.

After our experience with the Nerinx ninth-
graders, we would recommend continuing explora-
tion of the direct use of such films with students,
provided both the "live" course and the films made
consistent use of this "developmental" or
it accumulation" approach.

In particular, films made for teacher training may
have some potential for direct use with students.

1 0
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The present section embodies the main part of
this report. It is concerned with taking the list
of topics given in Section III, and building these
topics into complete classroom learning experiences.

1. A "Spiral" Approach. Although we shall discuss
the course topic by topic, the actual classroom
lessons represented "mixtures" of these topics,
in the following ways:

a) Where it seemed desirable, previous topics
were reviewed, were fitted into a broader per-
spective, or were revived for use in a new
context.

b) Sometimes a brief advance notice was used
to prepare the way for a future topic, in
order to get students thinking about some
new problem or some new approach in ad-
vance of the time when this problem would
make its "official" appearance in class.

c) Difficult and central topics were spread out
over some time, in order for ideas to mature
in the students' heads.

d) Variations were made for the sake of morale
and variety.

e) The teacher made some attempt to follow
student initiative, which implies some non-
sequential organization, since student ideas
about generalizations and alternative ap-
proaches cannot be predicted in advance.
For example, when the teacher was working
on a sequence leading to the solution of the
general quadratic equation by the method
of completing the square, a student (Regina)
developed an alternative method, for real
roots, based upon analytic geometry. Again,
when the teacher was developing an ap-

proach to Nij via bounded monotonic se-
quences, a student (Nancy 0.) developed an
alternative approach to the equation

X2 = 2
by using 2-by-2 matrices.

This "spiral" approach, then, considerably modi-
fied a strictly sequential "topic-by-topic" approach.
Any given topic would usually make its appear-
ance in many different lessons: as an advance
"teaser," as a problem for direct confrontation,
as a matter for brief review, as a matter for re-
assessment in the light of subsequent develop-
ments, as an alternative approach (possibly
unexpected by the teacher), or simply as some-
thing thrown in for the sake of variety.

2. The First Two Weeks. Because we chose not to
assume a previous familiarity with "modern"
mathematics courses, we began in September with
two weeks devoted to a quick tour through the
contents of Discovery -in Mathematics'that is to
say, we provided informal preliminary experiences
with true statements, false statements, open sen-
tences, truth sets, variables, functions, graphs of
functions, and algebraic identities. The tone was
informal, honest but not carefully precise, and
based upon a tentative use of induction from a
variety of instances. In addition to the kind of
thing that is contained in Discovery, we included
various lessons that were intended to show the
diverse faces of mathematics, which we now de-
scribe in items 3-8 that follow immediately.

3. Guessing Functions. This topic is obvious, but is
nonetheless gratifying. Some students make up a

Robert B. Davis, Discovery in Mathematics, Addison-
Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1964.

VI
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"rule;" such as "whatever number we tell them,
they will double it and subtract that from twenty."
The class now tell the "rule" team values of x,
the "rule" team use their function and tell the
class the corresponding numerical value of f(x).
It is the task of the class to guess what "rule" f (x)
is being used, and to write it in proper algebraic

notation.

Many valuable by-products can be derived from
this exercise; we mention one : argument will sooner

or later arise as to whether

+ 3) X 2
and

(2 X E) + 6 = A

represent the same "rule" or not. This leads to
the distinction (suggested by David Blackwell)
between "formula" and "function," and will lead
also to a "modern" definition of function as a set
of ordered pairs, etc. It is not fair to expect people
to guess your formula (cf. for example,

but it is fair to expect them to guess your function.

Even the dimensionality of the space of num-
bers of the form

a + b a, b rational

have made their appearance in this "guessing
functions" game; as have properties of primes, of

conic sections, of linearity and convexity, of ex-
ponential functions, etc.

In x, y notation, these expressions would read
(x + 3) 2 = y

and
2x + 6 = y.

"1111111
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(Our use of this topic stems from suggestions made
by W. Warwick Sawyer.)

4. Mathematics in the Laboratory: Problems of
Measurement.' We ask four students, indepen-
dently, to guess the width of the room. We record
all four numbers, compute the average, and mea-
sure the degree of consistency by computing the
range, the inner-quartile range, the average ab-
solute deviation from mean

E xi x 1,
N i 1

and the variance

1 E ( xi )2.

We then pass out 6-inch plastic rulers, and have
four students independently measure the width
of the room. With these four numbers we again
compute the average, and get measures of the
degree of agreement by computing ranges, aver-
age absolute deviation, and variance.

We then pass out yardsticks, and repeat the
process.

Finally, we repeat the process with four teams
using a surveyor's tape-measure.

The notions of averaging, estimating consistency
of independent measurements, and sources of
measurement error which are begun in this lesson

are continued in other laboratory work (for

2 This topic, as explored (in slightly modified form) by a
6th grade class, is presented in the film Average and
V ariance, available from The Madison Project.
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example, in the work on linear and non-linear
elasticity).

This topic is based upon suggestions made by
Professor William Walton, of Webster College,
and by Professor Frederic Mosteller, of Harvard
University.

5. Mathematics in the Laboratory: Making Scien-
tific Models. The students attempt to study the
"stress-vs.-strain" relationships for, first, a spring,
and, second, a chain of rubber bands. It is easy
to record data; it is far harder to decide what the
data is telling us.

In working with this data, we consider :

a) graphing the data
b) whether any seeming linearity is a fact of

the physical system or an artifact of our
procedure for studying the system

c) sources of error in measurements
d) where possible, writing the function alge-

braically (notice that this builds smoothly
on the earlier work in "guessing functions")

e) dependence or non-dependence upon the his-
torical past of the physical system (which
is of particular interest in the case of the
rubber bands)

f) range of validity of our study (as in "elastic
limit").

This material was originally suggested by Pro-
fessor Robert Karplus of the University of Cali-
fornia (Berkeley).

6. Implication, Contradiction, and Uniqueness. The
unit we are about to describe (based upon Pro-
fessor David Page's Hidden Numbers) is an "ex-
perience" unit. We are not concerned (yet) with
the elegant formulation of this portion of mathe-

it
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matics; what we are concerned with is providing
for our students some experience with implication,
contradiction, and uniqueness, on the grounds
that many of the students may not have had
previous experience with these concepts.

What we do is to play a game, according to the
following rules:

a) The teacher writes one or more numerals on
a piece of paper. Each numeral refers to a
positive integer. (Repetitions are allowed.)

b) The teacher will begin listing "clues" on the
blackboard, identifying clues by letters, as
"A," "B," "C," etc.

c) The teacher's clues are not necessarily true;
indeed, some will usually be false, and will
be designed to produce contradictions.

d) The students start with a "credit" of 5
points. What happens to this will be ex-
plained next.

e) Whenever a student believes he has found
a contradiction in the clues, he must begin by
stating precisely which set of clues he is
using (e.g., {A, B, D}). He then describes
the contradiction. If he is right, the teacher
must label all statements used by the student
(i.e., A, B, and D) as "True" or "False."
If the student is wrong, the "credit" (which was
initially 5 points) is reduced by 1.

f) In citing a contradiction (item "e" above),
a student is wrong if the set of statements
does not contain a contradiction, or if a proper
subset contains a contradiction. The student
is right if the set he cited does contain a
contradiction, and if no proper subset contains
a contradiction.



In order to help keep thinking straight,
students may write a possible collection of
numerals that they think the teacher wrote
on the paper. These "possibilities" are ac-
cumulated, discussed, and ruled out as ad-
ditional clues may require. No official scoring
is related to this informal list of "possibilities."

h) From time to time the teacher writes down
additional clues (which, again, may be true
or may be false).

i) In order to get the teacher to reveal the
numbers which he wrote on the paper, the
class must (at an appropriate time) bet the
teacher that a certain specific possibility is
the only one which is consistent with all the
"true" clues that have accumulated.

If the teacher can write down any other col-
lection of numbers that is consistent with all
of the "true" clues, then the students' "credit"
is reduced to zero.

If the teacher cannot write down some other
collection of numbers consistent with all
clues marked "T," then he must reveal the
paper on which he wrote the original "hid-
den numbers." This is the normal (and
desirable) outcome of the game.

j) Whenever the students' "credit" becomes
zero, the teacher takes away the paper on
which he wrote the "hidden numbers," and
never reveals it to the class. This is the
"penalty" outcome of the game.

k) The teacher adds clues as necessary, until
either the students "win" (the outcome
where the teacher reveals the hidden paper)
or else the students "lose" (the outcome
where the student "credit" becomes zero,

and the teacher removes the hidden paper
without ever revealing it).

1) Although clues themselves may be "true" or
false," the teacher never cheats in his labeling
of clues as "T" or "F," whenever he is re-
quired to do so by a student discovery of a
contradiction (Rule "e").

Although these rules sound complicated on paper,
they have proved simple enough in practice. This
game works smoothly in the classroom.

Manyindeed, potentially anyconcepts of
mathematics can be introduced into this game.
The following clues give a few suggestions:

"All of the numbers are prime."

"All of the numbers are relatively prime."

"The two liumbers are roots of the equation

x2 20x + 96 = 0."

"The 7 numbers have the form

a) a) (3) (3) (3) (3) 7)
where

a 5Z #, # 0 7, 7 0 a."
"All of the numbers are odd."

"The sum of the numbers is less than 37."

"The product of the numbers is 100."

"The sum of the numbers is a minimum, con-
sistent with all other clues."

"The smallest number is 8."

"No two numbers are the same."

"The collection C of numbers that I wrote has
the property that, if



n E C,
then
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(n 1) E C."

The original idea for this topic is due to Professor
David Page, of the University of Illinois and
Educational Services, Incorporated.

7. Truth Tables, Inference Schemes, and Mappings
of Cartesian Products of Truth-Value Spaces. Ob-
viously, at some point we wish to effect a transi-
tion from our neo-Egyptian "empirical" mathe-
matics, based upon generalizing from instances, to
a modern neo-Greek deductive approach. This will
depend upon two things selecting suitable axioms,
and developing a suitable logic.

It should be clear that, in the work described
above, we have begun to lay the groundwork for
a deductive approach. We now carry this further,
by some consideration of simple notions of mathe-
matical logic.

Our approach to logic is divided into three parts.

First, the students are asked to be "sociologists"
(or "anthropologists"), and to make up truth
tables based upon the way they and their friends
use the words "and," "or," "if.. . . then," "not," etc.

Second, having this before us, we now play a
legislative role: we proclaim that, henceforth in
this course, the word "or" shall be used as indi-
cated in our truth tables, and so on. This clearly
gives a new precision to our use of logical con-
nectives.

Finally, we behave as mathematicians: we seek
abstract representations for what we have done,
and we seek generalizations. The truth table
entries for "and," for example,

5
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P and Q

can be described as a mapping of the Cartesian
product V X V into V, where V is the "truth
value space,"

V= {T,F}.

The "and" mapping can be represented dia-
grammatically, as follows:

T F
F T
F F

"and"

This formulation suggests many interesting
questions, such as:

How many different mappings of V X V into
V exist? Does each have some familiar, obvious
name? What is the minimum number of map-
pings in terms of which all mappings of V X V
.÷ V can be expressed (solved originally by
H. M. Sheffer in 1913)? What happens to all
of this if V contains more than 2 elements?
If, say, V contains 3 elements, what would the
corresponding truth tables and inference schemes
look like?

8. Transformations or "Mappings." Since our work



in logic has gotten us well launched on the notion
of mappings, we now develop this further, using
numerical examples, the concept of isomorphism,
logarithms, the projection mapping in E2, and
simple substitution ciphers as mappings of a onto
Ct, where a = { A, B, C, D, E, . . ., X, Y, Z }.

9. Algebraic Identities. We begin by asking the
students if they can write a statement which
involves the variable "la" which will become
true whenever we make a numerical replacement
for the variable, no matter what number we use.
This question is easy and interesting, and leads
to the accumulation of a big list of identities,
such as

x = 0
OXEI=O

x 1 = 0
1 X 0 =

+ 0 =
o+Li=L
O +A=A+0
O XA=AX0

and so on.

Notice that, still lacking any system of axioms,
we cannot approach this topic deductively.

10. "Shortening Lists" of Identities by Using Im-
lication. This topic, also, is approached informally
for the present. For example, the list of three
identities

O -I-A= A-I-0
O X A=AXC1

A + (B X C) = (C X B) + A
can evidently be "shortened" to two, namely

O -1-A=A-1-0
O X A=AX0,

. _

since nothing has been lost thereby; the "missing"
identity can be derived from the other two. We
work out such derivations with gradually increas-
ing care and attention to detail.

11. Quantifiers. Over the past several years we
have been becoming increasingly aware of the
role of quantifiers. We have used them more ex-
plicitly than ever before in the present ninth-
grade course, and will probably use them even
more prominently in future trials of this course.

By "quantifiers" we mean primarily two symbols:

and

3 x which means "there exists an x"

vtx which means "for all x."

We use this last symbol also in a restricted sense,
as in

c.txo meaning "for all x such that x 0."

Virtually every "algebraic" statement may be
said to involve quantifiersalthough, of course,
they are traditionally omitted. For example, a
proper statement of the commutative law of addi-
tion might be

vtx vti, x + y = y + x.

As a further example, we might write
y such that x y = 1; we shall

call y the "multiplicative inverse of x."
The number y is uniquely determined by
the number x.

Somewhat similar to our explicit use of quanti-
fiers is our explicit use of logical inference, as in
this example:
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P: x2 5x + 6 = 0
Q: (x 2) (x 3) = 0

P <=. Q (logical equivalence)
R: x 2 = 0 or x 3 = 0

Q <=> R
Or, to give a second example,

P: Vw h = r
Q: w h = 7.2

P Q ("P implies Q").

We are coming to place similar explicit stress
upon the domain of variables, and the truth sets
of open sentences. Not that we are always careful;
the degree of care is matched to the best of our
judgment to the need for care in various situations.

12. A More Careful Approach to "Derivations."
We have already seen that the notion that CLM
and CLA imply A + (B X C) = (C X B) + A
has been pursued somewhat informally. We now
take a more careful look at what is involved.

a) The meaning of " =". In the first place, we
agree to interpret

A = B
to mean that A names something, and B
names something, and (in fact) A and B
name th3 same thing.

b) The "Principle of Names." If we examine
what we do in making a derivation of

A + (B X C) = (C X B) + A,
using CLA and CLM, we find steps such as
the following:

A + (B X C) = (C B) + A. \

A + (B X C) = (B X C) + A it

What we have done, evidently, is to take
the known identity

using CLM

A + (B X C) = (B X C) + A,
to delete a portion of it [namely one oc-
currence of (B X C)], getting

A + (B X C) = + A,

and thereafter to insert into the "gap"
(i.e. " ") another name [i.e. (C X B)]
for the same thing.

Attempts to express this in English sentences
can be clumsy; we shall make no such serious
attempt, but hope that our meaning is clear.

We can formulate this in moderately careful
language if we assert, as a rule of our logic,
the Principle of Names (abbreviated "P.N."),
namely:

P.N.: If, in any statement, open sentence
or identity a name for a thing is replaced
(in one or more occurrences) by another
name for the same thing, then the truth
value (of the statement), or the truth set
(of the open sentence) will not be changed.

We shall henceforth make this a rule of our
logic. Note that, for most purposes we permit
quantifiers to appear implicit y rather than
explicitly when we use P.N. When in doubt,
however, we pay careful heed to the quanti-
fiers, or to the respective truth sets and to
the replacement sets for the variables.

c) The "Rule for Substituting." We have, of
course, previously established the "rule for
substituting," that requires replacement in
every occurrence of a variable if the replace-
ment occurs in any. Note that this property
sharply distinguishes replacement for a vari-
able as against P.N., where changes in one
occurrence need not effect other occurrences
of the same original name.



d) Use of a Variable. Whenever we replace a
variable according to the "rule for sub-
stituting," we call the process U.V. ("Use of
a Variable"), and add this as a permissable
operation in our logic.

e) Reflexive Property of " = ". We agree that

We note that this might be considered a con-
sequence of our meaning for the symbol " = "
(i.e., as a restriction on how "names" may
be assigned to mathematical entities), or it
can be added now as a rule of our logic, or
(in fact) it can be inserted as an axiom of
our algebra (that is, = can be added
to our list of identities).

With children in grades 3-8, we have ordi-
narily pursued the third course (or, rather,
the children have elected the third course
and we have gone along with this choice).
With the present class of ninth-graders, how-
ever, we have preferred the second alterna-
tive, and we add

)94x, x = x
as a rule of our logic (known, of course, as
"R.P.E." for "reflexive property of
equality").

f) Transitive and Symmetric Properties of
Equality. We have similarly added, as further
rules of our logic, TPE and SPE, meaning,
respectively,

If A = B and B = C, then A = C.
If A = B, then B = A.

We would write these as:

(A = B and B = C) = A = C
A = B B = A.

g) A "Uniqueness" Axiom. In working with
additive inverses and with multiplicative
inverses, especially, it is convenient to have
a rule of our logic which asserts the following:

Let the set 8 contain exactly one element,
which we shall write as N(8) = 1. Let
a E 8, and let (3 E S. Then a names the
same thing that 3 does, i.e.,

a =

(In films of the Nerinx class, this rule of our logic
is referred to as the "Principle of Maureen," after
one of the students in the class. Actually, this
axiom really serves to define the notation

N (8) = 1

in a way that will permit us to use U.V.)

We then have a logic which consists of:

an interpretation of " = "

P.N.

U.V.

R.P.E.

S.P.E.

T.P.E.

the "Principle of Maureen"

This gives us a rather systematic tool for reshap-
ing statements, identities, and open sentences. If
it is not the elegant and formal tool of the modern
logicianand it is notthen it can nonetheless
quite properly claim to be a very considerable
improvement on what has traditionally been done
at the pre-college level.



We now have our logic, and it remains to select
a suitable set of axioms for our algebra.

13. Selection of Axioms and Theorems. The task of
selecting axioms and theorems isin principle, at
leastleft up to the students. (The teacher does,
of course, supply considerable guidance.) In order
for a statement or an identity to qualify as a
theorem we must, of course, make a derivation for
it, using the rules of our logic, and using those
algebraic axioms which we have previously
selected.

Throughout the course, the process of selecting
axioms was continuous and cumulative; so was
the process of proving theorems. Certain
"plateaus" could, however, be identified, as
follows:

a) The point at which the class had a set of
axioms for which the non-negative integers
were a model, and from which it seemed
possible to prove many of the algebraic prop-
erties of the non-negative integers. These
axioms were not, in fact, categorical, nor
did they provide for order relations, although
the students were not, at this stage, aware
of these limitations of the set of axioms
which they had chosen.

b) The point at which the class had a set of
axioms, generally similar to those described
above, dealing with the system of integers
(positive, negative, and zero).

c) The point at which the class had a set of
axioms dealing with rational numbers.

Two remarks might be made: first, we choose to separate
our logic from our algebra reasonably carefully; second,
we have not defined what constitutes a "legal name."
Part of this latter task is handled via algebraic closure
axioms.

d) The point at which order relations were
included.

e) The introduction of ("rational") complex
numbers, by the use of 2-by-2 matrices,
without additional axioms.

f) The introduction of an axiom dealing with
the topological completeness of the real line
(stated in terms of sequences), and the con-
sequent ability to deal with real numbers.

These various "plateaus" will be discussed in the
next few sections.

14. Axioms for the Non-Negative Integers. As dis-
cussed above, this was the first "plateau." The
class accumulated a set of axioms that appeared
powerful in their ability to generate theorems con-
cerning the multiplicative and additive algebraic
structure of the positive integers. These axioms
did not, in fact, provide a categorical description
of the positive integers, and they omitted order
relations, but the students were not, at this point,
aware of these shortcomings in the set of axioms
which they had chosen.

The axioms were:
a) closure: If A and B are "legal" names, then

A + B is a "legal" name.
If A and B are "legal" names, then
A X B is a "legal" name.

b)CLA: El+P=p+El
(or, alternatively,
A94x A9411 X y = y x)

c)CLM: EIXA=AXEI
(or, A9(x A9( 11 X y = y x)

d) D.L.: El X (A + V) =
(El X .6.) + (El X V)

(A94x A9411 )94 z

(y z) = (x y) + (x z) )
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e) ALA: 111 + (A + p) =

f) ALM.: 111 X (A X V) =

g)L1: EIX1=0
(i.e., 3 an element 1 Acrts

x 1 = x)

h) ALZ:

i) MLZ:

(0 + A) + V

(0 X A) X V

El + 0 =
(i.e., 3 an element 0

x 0 = x)

1E00)=0
(i.e., >$s, x 0 = 0)

[j) (not added until later, when the class was
considering "models of axiom systems"):

1 0

This axiom moved us one step further toward
a categorical description; it was needed for
certain later proofs, and was recognized by
the class at that time.]

Definition: The usual numerals shall be defined
recursively, according to the pattern

1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
4 + 1 = 5

From these axioms it is easy to prove theorems
such as these:

1 It was later recognized by the students (probably from
collateral reading) that "MLZ" is, in fact, a theorem.
It is not, however, one which students easily identify
as such, and easily prove.

Theorem: 0+0= 2 X El
Theorern: (LI1+ A) X (111 + =

(0 X 0) + [(A + A) X En +
(A X A)
[where we have omitted one set of
parentheses on the right hand side,
by introducing a suitable conven-
tion, namely
a + b c

shall mean
(a + b) c ]

Theorem: 6 + 3 = 9
Theorem: A + (B X C) = (C X B) + A
Theorem: (A + B) X (C D) =

(D C) X (B + A)
The preceding (with one obvious exception) are
to be regarded as identities.

Even at this stage students can begin to get a
feeling for algebraic structure. As the selection of
axioms proceeds further, they come to get a real
feeling for the use of axioms in opening up new
algebraical structures.

15. Axioms for the Integers. To the preceding list
of axioms we now add this:

Existence of Additive Inverses (also called
"Law of Opposites"; unfortunately the word
opposite" appears to have too many non-

mathematical connotations):
)94s the open sentence x El = 0 has
exactly one element in its truth set. One
name for this element is °x.

We now define "subtraction":
def
= +

It is now possible to prove such theorems as:



Theorem : °(°A) = A
(i.e., 'SA °(°A) = A)

Theorem : + A) X (0 A) =
(0 X 0) (A X A)

[i.e., >94s >94u (x y)

y) = (x x) (11 y),
or, using exponents,

y) (x y) = x2 y2]

Theorem : 5 3 = 2

As a result of our new axiom we (may) now have
some new numbers. To help us keep track of
them, we introduce some new symbolism :

+0 = 0 °(+0) = 0
+1 = 1 °(+1) = 1
+2 = 2 °(+2) = 2
+3 = 3 °(+3) = 3

Notice that we do not yet have the Law of
Trichotomy; many different models for this axiom
system exist, and +10 may name the same number
that 2 names (to cite one obvious example). We
do not yet have "positive" and "negative" in the
sense of an order relation. This will appear presently.

16. The Algebra of Matrices. The present brief
outline of the course has not followed the actual
time sequence of the Nerinx Hall class. At a much
earlier point in the course we had introduced the
addition and multiplication of matrices. This pres-
entation followed the Madison Project publication
entitled "Matrices, Functions, and Other Topics,"
and so will not be discussed in detail here. Suffice
it to say that the students could add and multiply
matrices, and were in the habit of using matrix
algebra as a contrast against the algebra of real

numbers, as this latter gradually unfolds. Thus,
for example, CLA is valid for both systems; CLM
holds for real numbers but not for matrices; D.L.
holds for both ; so does the existence of additive
inverses (however, the search for matrix analogues
for 0 and 1 is exciting!). Surprisingly, ALM holds
for both.

Moreover, the correspondence
A 0 \

k 0 A ) A

introduces the first "operationally valuable" in-
stance of an isomorphism. By exploiting this later,
we shall deal with

x2 = 4
and even, to a limited extent, with

x2 = 2.

As we shall see, subsequent work on simultaneous
linear equations will draw on matrix algebra ; and
some of the work in trigonometry might have done
so, but happened not to. The picture of E2 as a
linear vector space began to emerge from the
work with matrices, as did the picture of the
complex plane.

However, one of the greatest values of the system
of 2-by-2 matrices was the important role that it
played, alongside modular arithmetic, in providing
examples for our discussions of "models for an
axiom system."

17. Models of Axiom Systems. As the course pro-
gressed, it was the natural point of view of the
students to believe that our "careful, legal axiom
systems" described some thing or some things.

The question then arises: how many mathematical
systems satisfy these axioms?





At the first level, if we retain all of our axioms (as
stated above) for the non-negative integers, ex-
cept that we discard CLM, then we can find many
quite different mathematical systems for which
the axioms hold. Major examples are:

the system of non-negative integers
the system of (all) integers
the system of rational numbers
the system of 2-by-2 matrices
"clock" arithmetic on a 12-hour clock
"clock" arithmetic on a 5-hour clock.

Moreover, prior to stating the axiom that

1 0,

the axioms were satisfied by a system with a single
element, where every "legal" name was, in fact,
a name for 0.

At the second level (all integers), provided again
that we temporarily suspend CLM, all of the
structures cited above are still models, except
for the first one, which does not admit additive
inverses.

Not only did the discussion of models lead to
the axiom

1 0,

but it also led to the following axiom:

"pq = 0 Axiom":
(pq = 0) = (either p = 0 or q = 0),

From this point on, then, we shall regard CLM and
the "pq = 0 Axiom" as being in force, thereby
ruling out the system of 2-by-2 matrices (but
notice that certain subsets of the set of 2-by-2
matrices are still valid models!), and ruling out

modular arithmetic modulo any non-prime integer.

18. Order Axioms. Before proceeding far with
rational numbers, we shall need to be in a position
to show that various things are not names for
zero. At present our ability to do this is most
severely limited moreover, as our models show,
the limitation is not in our logic, but rather in the
algebraic axioms themselves. We remedy this forth-
with: in effect, we "unroll" our various "clocks,"
and require them to lie out flat like a properly-
behaved number line.

The process of doing this, as we shall see presently,
involves us in one of the subtlest or most intricate
logical situations that is ever encountered in the
entire course.

Our general approach will be to describe an ade-
quate order relation axiomatically. Appealing to
our background in models for axiom systems, we
shall then ask whether, in fact, our existing
mathematical systems can be made to admit of a
model for our ordering axioms.

For the axiomatic description of an "adequate"
or "reasonable" ordering system, there are several
standard approaches. One (cf. E. E. Moise, Ele-
mentary Geometry from an Advanced Standpoint,
Section 1.4, pp. 10 ff) states axioms on a relation
" <," and thereafter defines "positivity" and
negativity" in terms of " < ." The other common

approach (cf. Birkhoff and MacLane, A Survey of
Modern Algebra, 1944 edition, p. 7) reverses this
procedure, gives an axiomatic description of "posi-
tivity," and from this proceeds to define the rela-
tion " < " (and, of course, "negativity").
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For convenience of comparison, we display these two approaches side-by-side:

Axiomatic Description of <

0. If a and 13 are any elements of our mathematical
system, then

<
is a statement, and is either tri,3 or false.

1. (Addition axiom)
(a < b) c, a + < b c].

2. (Multiplication axiom)
(a > 0 and b > 0) a b > 0.

3. (Law of Trichotomy) If a and 3 are any ele-
ments of our system, then one of the following
statements is true, and the other two state-
ments are false:

a) a <
b) = [3
c) [3 < a

4. Transitivity:
(« < 13 and 13 < 7) a<y

We now define the set (P (of "axiomatically posi-
tive" elements) by saying:

(« E (P) :=> (0 < a).
The set DI of "axiomatically negative" elements
is defined by:

(6 E Di) <=> (6 < 0).

Axiomatic Description of "(P"

0'. (P is a set of elements of our mathematical
system.

1'. (P is algebraically closed under addition: that is,
(a E CP and E (P) a + E (P.

2'. (5) is algebraically closed under multiplication:
i.e.,
(« E CP and [3 E (P) « (3 . E (P.

3'. (Law of Trichotomy) If a is any element what-
soever of our mathematical system, then one
of the following statements is "True" and the
other two statements are "False":

a) « E
b) = 0
c) °« E

The elements of (P will be called "axiomatically
positive."

The elements a ) °« E (P will be called "axio-
matically negative."

The statement 7 < 6 shall have the same truth
value as the statement

6 y E (P,
i.e., (7 < 6) <=> (6 7 E (P).

71



Notice that these two approaches are in fact
equivalent. The correspondence of Trichotomy is
obvious. From

a < b Pc4c, a + c < b + c],
together with the transitivity of " <," we easily
get thiat (P is algebraically closed under addition:

To prove: (0 < a and 0 < (3) = (0 < a + (3)
Proof: 0 < a

0 <
0+0<a+0

a + 0 < a +
by transitivity,

0 + 0 < a + 13.
Q.E.D. (CLA and ALZ being

assumed)

It is also obvious that 2 implies 2'. Consequently,
(1, 2, 3, and 4) = (1', 2', and 3').

Conversely, 3' = 3 and 2' = 2 are immediate.
Axiom 1 follows from the definition of " <, "
certain algebraic axioms being assumed [so that
(b c) (a + c) = b a]. That 1' implies 4
is also immediate, since (b a) + (c b) =
c a.

We shall use the axiomatic description of (P. Here
we encounter an interesting situation (cf. T. M.
Apostol, Calculus, Vol. I, p. 16): we have the
notion of "positive" in two different senses. We
have agreed that the elements of any subset (P
of the set of elements in our mathematical system
deserves to be called "axiomatically positive" if (P
satisfies the axioms above. But, returning to our
basic mathematical system, we already have a set
of elements called "positive," namely 1 (or +1),
2 = 1 + 1 (or +2), 3 = 2 + 1 (or +3), . . . .

Now, the question is, is the set

11, 2, 3, 4, . . .

a legal candidate to be (P, the set of "axiomatically
positive" elements?

If so, then haven't we had (P all along, so that
adding the order axioms on (P has, in fact, really
added nothing whatsoever?

A consideration of various models of our axiom
system makes it clear that we have, indeed, added
something further to our description when we add
the order axioms, for they (and they only) rule
out the finite fields represented (for example) by
the 7-hour clock.

But if, say, we add Axiom 3' to our previous list
of axioms, the set

{ 1, 2, 3, 4, . .

is already defined, and the "Axioms" 1' and 2'
should apparently be theorems. Are they?

We did not try to resolve this question with the
9th graders. One approach might have been via
the introduction of mathematical induction. We
did not pursue this further with the Nerinx class.

If we add Axioms 0', 1', 2', and 3' to our list of
axioms (even realizing that there lurks here the
possibility of either redundancy or contradiction),
we can prove all of the theorems that we require.

For example, we can prove that 7 0 9.

Theorem: 7 0 9

Proof : 1)

2)
7

8
+ 1 = 8
+ 1 = 9

Note use of P.N.

3) (7 + 1) + 1 =
4) 7 + (1 -1- 1) = 9
5) 7 -1- 2 = 9
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6) Hence (various steps omitted here),
9 7 = 2

7) 2 E
8) 9 7 E 63 (Note use of P.N.)
9) .'. 7 < 9

10) 9 0 7 (by Law of Trichotomy)
Q.E.D.

Notice that (as a consideration of various models
for our axiom system at various stages of its
development shows), it has not always been true
(at some earlier stages of our axiom system) that
7 was necessarily different from 9. At various
earlier stages it was quite possible that "7" did
name the same element that "9" named.

Consequently, we surely have added something
additional to our description when we added the
order axioms. To look at it another way, we have
gained many additional theorems (one of which
is: 7 0 9).

19. Axioms for the System of Rational Numbers.
Since we are now in a position, thanks to the order
axioms, to be able to tell when we do (or do not)
have a name for 0, we can proceed to axioms for
the rational numbers.

This extension, using "division," parallels pre-
cisely our earlier extension to the system of in-
tegers, via additive inverses. Evidently, the key
axiom here will be:

>94x o the open sentence x El = 1 has a
truth set that contains exactly one element. One
name for this element shall be:

rx .

(As an alternative notation here, we can write:
>94x 0 let 5x denote the truth set for the open
sentence x Li = 1. Then

and

We now define "fractions" ag to mean

a X rb,
and we define division in the same way:

a # = a X ')(3.

We can now easily prove such theorems as:

Theorem:

Theorem:

Theorem:

and so on.

4 2 = 2
a c ad
b d bc

LC ad b+d bc

20. The General Quadratic Equation. Our develop-
ment here is fairly well documented in three films. I

The underlying idea follows Polya's approach to
problem-solving,' which might be paraphrased
roughly as the construction of a suitable sequence
of questions which the would-be problem-solver
poses to himself, such as:

What do I already know about this topic?

What does this remind me of?

What changes in the problem would make it
easier? What changes would make it harder?

What parts of the problem seem to be making
it difficult? What parts are unfamiliar to me?

1 The films are: Derivation of the Quadratic Formula
First Beginnings, Derivation of the Quadratic Formula
Final Summary, and Quadratic Equations.

2 George Polya, How to Solve It, Doubleday, 1957.
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Now that I have solved such-and-such a prob-
lem, where can I go from here? How can I
extend my solution? How can I extend my
method? Where else can I use my method? What
new problems can I reduce to this one that I
have now solved?

Following such a sequence of questions, the stu-
dents follow a familiar and "traditional" approach
to the quadratic formula, namely, the derivation
by "completing the square."

The expected sequence goes like this:

0. We want to solve quadratic equations, by a
powerful general method if we can find one.

1. Let's try some easy quadratic equations. Do
we know any?

Yes: x2 = 4 The truth set is I +2, 2.1

2. Can we extend this?

Yes: x2 = p The truth set is
provided that we can find a square root of p.

3. When can we find a square root of p?

a) We can find VT) if
p E t 0, 1, 4, 9, 16, . . . 1.

b) We can find (by using matrices) if
p E 1, 4, 9, .

Cf. Robert B. Davis, "Solving Problems and Construct-
ing SystemsQuadratic Equations and Vectors," Report
of an Orientation Conference for SM SG Experimental
Centers, Chicago, Illinois, September 19, 1959, pp. 97-101;
also Robert B. Davis, Matrices, Functions, and Other
Topics, Student Discussion Guide, and Matrices, Functions,
and Other Topics, A Text for Teachers, The Madison
Project, 1963.

c) We can find if p = a'
2,

where a and b
b

are integers (and, obviously b 0).

d) Otherwise we have trouble. We'll leave
this for the moment, and come back and
think about it later.

4. Can we extend our method for x2 = p?

Yes: (x 1)2 = op requires
x 1 E \53 , hence
x E { + 1, Vp + 1 1.

5. Can we extend this?

Yes: The "1" wassnot crucial. (x a)2 = p
has the truth set

+ a, .)/7; + a 1.

6. Are we now able to solve all the quadratic
equations in the world? Are there any that
we can't solve (immediately, that is)?
There are others: we can't (immediately)
solve

nor
x2 8x + 16 = 49,

X2 6x + 12 = 4.

7. Can we reduce either of these new problems
to our already-solved form

(x a)2 = p?.
Yes: For x2 8x + 16 = 49, we can use
P.N. to delete the left-hand side

= 49
and to replace it by (x 4)2:

(x 4)2 = 49.
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This is justified because of the identity
)Sx, x2 8x + 16 = (x 4)2.

Now, the equation
(x 4)2 = 49

is of the form
(x a)2 = p,

and we can write the truth set by a mere
replacement of variables (U.V.):

4 * a
49 * p

The truth set

Nri; + a, .rp + a

then becomes

+ 4, -1/44 + 4 1
which is, evidently,

1 7 + 4, 7 di 4 1

11, 3 1
8. Will Mary Catherine's method work for the

equation

i.e.,

x2 6x + 12 = 4?
In the Nerinx Hall class, a girl named Mary Catherine
both devised these identities, and used them to solve this
particular problem. This was a significant "technological
break-through"or "historical break-through."

All of the students appreciated the importance of this
break-though. We (the teachers) are interested in the
fact that this kind of "discovery" course in effect brings
mathematical history into the classroom. All of these stu-
dents really know what a historical break-through means.
They have lived through it. They know the pre-dawn
doubts: Have we reached the limits? Is it possible to go
further? Then they have seen the tentative new sugges-
tion, and gradually grasped its relevance and its utility.

We (the faculty) often found the history of mathe-
matics a meaningless recital of names and dates. For
these students, the history of mathematics describes some-
thing they have lived through, themselves. Is this the deepest
value of this kind of "discow3ry" cout-se, that it gives us
a deeper and personal perspe6 ive on our cultural heritage?

No, not directly, because we can't find a
"Mary Catherine"-type identity

x2 6x + 12 = (x a)2.

9. When can we find a suitable "Mary
Catherine"-type identity?

Answer (given by Regina): For the expression
x2 Ax + B,

we can find a suitable "Mary Catherine"
identity if and only if

A

10. What can we do about the equation
x2 6x + 12 = 4?

Answer (given by Kathy):

2
32

12

_ 3
= 9

9 = 3

Subtract 3 from each side of the equation.
(This depends, of course, upon earlier work
on "equivalent equations" and "transform
operations."2)

It is easy to complete this chain of reasoning.
In the Nerinx Hall class, a major contribution to
the final answer was made by Clare.

What precedes was the line of attack expected by
the teacher. As can be seen in the films, it did, in
fact, occur with three different classes (grades 5,
7, and 9). However, with the 9th grade class, in
addition to this approach, the students devised an
alternative approach. If the approach above is
described as predominantly algebraic, the alter-
2 Robert B. Davis, Discovery in Mathematics: A Text for

Teachers, Addison-Wesley Publishing Co., Reading, Mas-
sachusetts, 1964, pp. 139-153.
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Regina's geometric method:

Let Q(x) be a quadratic expression of the form
Q(x) = x2 Ax + B.

Then the graph of

= Q(x)
will be a parabola in what we might call the
"hanging cable" position:

Now, to solve the quadratic equation

Q(x) =
graph y = Q(x), and (on the same axes) graph

=
and find the x-coordinates of the points of
intersection.

Will Regina's geometric method always work?

1) It will produce two roots if the parabola and
straight line intersect in two points with
rational co-ordinates:

2) It will produce one root if the parabola and
straight line are tangent:

3) It will produce no roots if the parabola and
straight line fail to intersect:

=1-
(The teacher, perhaps unwisely, told the class
that this case corresponded to the need for
matricesi.e., complex numbers.)

4) The most interesting case occurs when the
parabola and straight line intersect in two
points whose precise x-coordinates keep
eluding our search. For example, consider
the equation

X2 6x + 10 = 6.

We can study this via the parabola
y = x2 6x + 10

x y
0 10
1 5
2 2
3 1

4 2
5 5



and the line y = 6

If we seek the x-coordinate for the left-hand
point of intersection, we see that

x = 1 is too large
x = 0 is too small.

1
We can try as a replacement for the variable x;

1 110 3 = 74
4

1
and so, by looking at the graph, we see that

is too small a value for x (we are evidently to
the left of the actual point of intersection).

At this point we really brought a significant piece
of mathematical history into the classroom, and
enacted it as a living reality. We became involved
in the most exciting mathematical argument the

author has ever witnessed in any of his classes. We
re-lived the ancient Greek controversy.

21. The Ancient Greek Controversy. Pat, look-
ing at the earlier algebraic solution,' identified this
as the task of finding a number whose square was
5. She pointed out:

2 is too small, since 22 = 4 < 5

3 is too large, since 32 = 9 > 5

2.5 is too large, since 2.52 = 6.25 > 5

2.1 is too small, since 2.12 = 4.41 < 5

2.2 is too small, since 2.22 = 4.84 < 5

2.3 is too large, since 2.32 = 5.29 > 5

and so on.

Pat argued that the "correct" answer would con-
tinue to elude us; we could never find a number
r such that

r2 = 5.

Nancy F., thinking of the geometric picture,
argued that there clearly was a point of intersec-
tion of the parabola and the straight line, and
that it must have some x-coordinate.

Probably every girl in class chose sides in this
argument, though some occasionally shifted on
what seemed to be the weight of new evidence.

Where, after all, did this "parabola" come from?
First we graphed integers, then fractionsthen
we drew a smooth line through them. Were we en-
titled to? Did we, at this step, fill in lots of little
"holes," without any justification for doing so?

For the equation x2 6x + 10 = 6, subtract 1 from each
side, to get x2 6x + 9 = 5, or (x 3)2 = 5.
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The teacher used the pattern

11111.141AL
'I*

AVAAVArrv
to establish the Theorem of Pythagoras for isos-
celes right triangles (evidently mainly a geometric
matter). Hence the Greeks had a geometric reason
for beleiving that there existed a number s"
such that

s2 = 2.

We then used a standard algebraic argument to
show that, p and q being positive integers,

p2

= 2
q2

led to a contradiction. Thus the Greek's had an
algebraic reason for believing that there did not
exist, within Greek arithmetic, any number what-
soever such that

s2 = 2.

We had paralleled the Greeks precisely.

They were ledit is saidto drink hemlock. What
should we do?

Nancy 0. contributed a major break-through, but
one whose implications are hard to discern, by
translating

x2 = 2,

I

via isomorphism, into matrix language

tA B tA B

kC Dj kC Di
and solving it (!) with the matrix

( 0 2

1 0

(Anyone interested in following the contributions
of individual students should observe that "Nancy
0." "Nancy F.")

The further pursuit of this controversy led us to
consider the smallest integer that was too large, the
largest integer that was too small, the smallest number

A
N-I-that was too large, etc., thereby getting

10
two sequences,

2, 1.5, 1.42, 1.415, . . .

1, 1.4, 1.41, 1.414, . . .

Now, if a and 63 are any sets, if a c 63, and if
n( a ) is any numerical attribute of a, then it
must be true that

max n( a ) max n( a )
E A a E B

i.e., the richest person in this building is at least
as rich as the richest person in this room.

In this way, one sees that the first sequence
2, 1.5, 1.42, . . .

must be monotonically decreasing (that is,

Vsn) tin > tin + 1)
because it depends upon minima, and the other
sequence must be monotonically increasing
(i.e.,

)0 2 ,

2 0

Vsn) < + 1 )
We now turn to the study of monotonic sequences.



22. Monotonic Sequences. By considering various
examples, and in particular by trying to fill in
every triangular cell in the classification scheme

bounded above not bounded above

monotonically
increasing

convergent

divergent

convergent

divergent

monotonically
decreasing

convergent

divergent

convergent

divergent

the students were led to conjecture that "every
monotonically-increasing sequence that is bounaed
above converges," and "every monotonically-
decreasing sequence that is bounded below con-
verges."

After some thought, a student (very wisely
indeed) conjectured that "algebraic" axioms such
as CLA, CLM, DL, etc., could never suffice to
prove these exciting new statements.

Consequently it was decided, for the time being
at least, to add these two new statements as
two new axioms.

From this point it was possible to settle the N/--
controversy, and to discuss the system of real
numbers. A completely adequate theory of limits
of infinite sequences had to be deferred until
next year.'

23. Convergence. It might, however, be worth a
remark or two about the approach to convergence
that was used. In the first place, the actual word
"limit" was never introduced nor used, since in our
experience it has many connotations which mis-

Cf., however, the experimental film Limits.

lead the intuition, rather than aiding it. Ninth-
graders do not have the sophistication of Lewis
Carroll, to say "it is a question of who is going to
be boss [the word or I]."

Since, however, the task for the class (as it was
historically for Newton, Euler, and Cauchy) is to
use one's intuition as a foundation on which to
build a more formal treatment, we used the fol-
lowing approach, in order to clarify intuitive,
ideas as much as possible:

For any sequence made up by himself, or by the
class, the teacher either assigned an "associated
number," or else said that he refused, and labelled
the sequence divergent. To give some examples:

sequence associated number

1 1 1 1
-4, 3,

0.9, 0.99,
1, 0, 1 , 0,
1, 1, 1, 1,

and so on.

0

0.999, 1

1 , 0, none (divergent)
1, . . . 1

This brought the activity into a framework often
used before by these students: you are to guess
"What's My Rule?"

As student guesses revealed part, but not all, of the
truth, the teacher proposed new sequences as
counter-examples, thereby continuing the process
of refining the formal verbal statement.

24. Simultaneous Equations. Actually, the work
on infinite sequences closed the year's course, but
we shall now go backwards in time and mention
various other topics that had been treated earlier.

One such topic was simultane, ts equations, espe-
cially two equations in two unknowns. Various





approaches were used, especially via graphs and
intersecting lines, and via matrix inversion. For
the actual task of matrix inversion itself several
different approaches were again used.

25. Isomorphism. The use of the concept of iso-
morphism has been discussed above; we list it
here for emphasis. This is, above all, a useful con-
cept that aids in the solution of many problems
(cf., for example, some of the earlier versions of
the UICSM materials, in relation to the "book-
store" problem).

26. Linearity and Convexity. One of the common
errors of college freshmen is to replace

sin 2x
2x

by

or to assume that
sin (A B) = sin A + sin B

or

N/A B = 'VA +

In an attempt to clarify this issue, we spent some
time on linearity and convexity, especially via
graphs, and in relation to examples from physics,
the "law of diminishing returns" in economics, etc.

27. Transformations or Mappings. The general con-
cept of transformation or mapping was presented
in various forms, including:

isomorphisms between number systems
isomorphisms between number systems and
matrices
geometric mapping of E2 E2

simple substitution ciphers, where the set Ct of

all letters of the alphabet was mapped onto
itself
mappings of V X V ÷ V, where V = { T, F },
as discussed above in the section on "Logic."

As an example of this "code" technique, which
proved popular, we might obtain a cipher from
the mapping

A

28. Identities in the Distance Function d(P, Q).

This topic was presented by asking the students
to make up identities involving d(P, Q), where
P and Q are points on the number line.

Most of the standard results were obtained from
student lists, including

d(P, Q) = IP QI

d(P, Q) = d(Q, P)
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d(P, Q) > 0
d(P, P) = 0
(P Q) d(P, Q) 0.

29. Complex Numbers and the Complex Plane. As
mentioned above, the extension of the rational
number system to the "rational" complex number
system was achieved by using matrices, and pre-
ceded any discussion of irrational numbers. The
isomorphism

)\ 0 A
A A rational

permits us to rewrite the equation
x2 = -4

as

DB ) X

for which

=

A

C

B

D

0 4

0

\
-4 /

0 -2 \
k +2 0

is an element of the truth set. So also is

0 +2

-2 0 .

We introduce the notation (where a is a rational
number)

a
A

and the symbol

B def. aA

x

aC a D

0 -1 \
k +1 0

IA

Invoking closure, we are dealing with the system

A B

°B A ,

A and B rational.

We now try to use the matrices of this last form
above to name points in E2.

The use of
0 0

k 0 0
at (0, 0), and of

A

)0 A
at (A, 0) is obvious. Once we elect to use x as a
name for (0, 1), the die is cast. All other cor-
respondences between matrices of the form

A B

°B A

and points of E2 are now determined.

Addition of such matrices has the obvious geo-
metric meaning of vector addition:

and the question arises, how about multiplication?

This latter question can be regarded as a question
in empirical science, and we can formulate "ex-
periments" (i.e., select specific products to work
out) from which we hope a general picture will
emerge.



If the students knew the "double-angle" identities
in trigonometry, they could, of course, settle the
matter of multiplication completely. At this point
in the course, the Nerinx students did not know
these "double-angle" identities.

30. Extensions of Definitions. What we mean here
is essentially the celebrated "correspondence prin-
ciple" of quantum mechanics, or a primitive
analog of "analytic continuation" in classical
complex variables.'

An effective tool for introducing the subject is
David Page's "Maneuvers on Lattices." This
goes as follows:

First, we draw part of an infinite array:

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

Then we tell the students that

21

is the name of a number; we ask them to find a
more familiar name for this number (note that

21 = 22
rihich is what we had hoped for.

The students then work out these names:
25 = 15
16 / = 27
27 N = 18
18 = 20
8 4- = 7
5 4 I = 14

and so on, working intuitively and with no official
meaning for these new symbols.

We note many standard algebraic laws, such as:
15 4- 4- = 15
16 / < = 16
5 z = 5
3 4- 4- = 4

103 4 4 = 104
and so on.

We have still not said what we mean by these
new symbols.

Still working with each individual student's in-
tuitive and unverbalized notion of what 7,
I, etc., mean, we note certain apparent laws:

a) ("inverses") r] 4 .
etc.

b) ("vector addition") r] = or
4- = 0, etc.

T =
z

c) ("commutative")

we have not told them what 21 means). They
respond with

1 Cf. Eves and Newsom, An Introduction to the Foundation
and Fundamental Concepts of Mathematics, Holt, Rinehart,
and Winston, 1964, pp. 120-121, concerning the work of
George Peacock.

But wait! Do these "laws" really hold? Surely
5 = 9,

and
5 4- 4- = 7,

SO

5 4- 4- = 5

,
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However, suppose we replace the variable 111

with 9, rather than 5. Then

9 = 10,
and what does

9 >
mean?

At this point we ask students to verbalize their
various meanings for is, etc. Fortunately,
it has always happened in our classes (perhaps
because the predominantly geometric orientation
of this topic has introduced a psychological
mental set") that most students speak in terms

of actual motions on the lattice array of numerals.
This definition, which we hoped for, has the
pedagogical advantage that it breaks down when
we reach the end of the array, and will require
suitable extension.

What shall we mean by

10 ?

Various commonly suggested answers:
10 = 0 (when you "fall off the edge," call

it zero)

10 = 10 (when you can't move, stay put)
10 = 20 (when you hit a boundary, go up)
10 = 1 (the array is wrapped around

a cylinder)

10 = 11 (the array is wrapped spirally
around a cylinder, like a barber
pole)

" " means "add 1," " I " means "add 10,"
" means "subtract 10," " " means "add

11," etc. (this always worked in the interior

4

of the array, and it still makes sense at the
boundary).

These various suggestions can be checked against
what happens to our "laws" such as

111 ) ) ) ) 4-- = 111 ) )
0 / = T

0 / = 0

and so forth. The desirable features of a legitimate
extension of a definition can be illustrated clearly.

This notion of the "extension of a definition" can
now be brought to bear upon:

a) exponents: am an = am ", etc., as we go
beyond positive integer exponents

b) the definition of 0!

c) trigonometric functions for 90° < 0 or
0 < 0

d) (if the students are ready) summability of
infinite series by Abel summation, Cesaro
summation, etc. (not done with the Nerinx
Hall class)

e) the arithmetic of signed numbers.

We illustrate this last instance in more detail:

We assume that the arithmetic of positive integers
is already established. We also assume that, using
only integral values, the discrete linear graphs
are already familiar; that is, for example

(3xLIP= A
with the discrete graph (for integral values)
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We shall extend these straight-line patterns to
include points in all 4 quadrants. The identification
of the proper graph can be carried out independently
of the process of multiplication, by extending from
a few established cases, and by construing "71 to
mean "down" if "+.1" means "up" (as has been
done earlier on the number line).

176rEM...Eitar.

We now define fni(x) to be the function obtained
from the graph, through (0, 0), with the pattern

over one to the right and up m." This can be
read from suitable graphs, and ean be done in-
dependently of multiplication.

We now define
m X n

to mean
fm(n).

It is now simple to verify that, for familiar cases,
we get familiar answers

12 (3) = 6
12 (2) = 4
fl (5) = 5
f5 (1) = 5
h (2) 6

and so on. It is also simple to use this extension
to get "new" results:

f--1 (-1) = +1.
and so forth.

This use of graphs as a foundation for multiplica-
tion was suggested by Professor Paul Rosenbloom
of the University of Minnesota. In the present
course it is not the only approach to the arith-
metic of signed numbers, but is used alongside

models" ("pebbles-in-the-bag" and "postman
stories"), and alongside a careful axiomatic
approach.

1 Cf. the Madison Project film entitled Negative One Times
Negative One Equals Positive One, the film A Lesson with
Second Graders, and the film Postman Stories.
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How is the present course different from other "modern" ninth-
grade "algebra" courses?

In general, we believe it differs in these respects:

a) the inclusion of the study of infinite sequences, and the use of bounded
monotonic sequences as a foundation for irrational numbers

b) the inclusion of matrix algebra

c) the emphasis upon an axiomatic approach

d) the "developmental" approach by which sets of axioms are gradually
modified as new needs arise or as new potentialities come into view

e) the inclusion of logic

f) the inclusion of laboratory experiments, and a statistical approach
to measurement problems

g) the emphasis upon co-ordinate geometry

h) the unusually high degree of student participation, and the emphasis
on student "discovery" (e. g., the students choose the sets of axioms,
subject to argument by the teacher)

i) the considerably faster pace of moving ahead.

Obviously, it is for each teacher to decide on such matters for
himself. However, we believe there is enough difference to justify
one additional version of ninth-grade algebra.

4
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The Madison Project's supplementary algebra and
geometry program for grades two through eight is
presented in four books, and in a sequence of
films. The books are:

Robert B. Davis, Discovery in Mathematics:
Text for Teachers, Addison-Wesley Publishing
Co., Reading, Massachusetts, 1964.

Robert B. Davis, Discovery in Mathematics:
Student Discussion Guide, Addison-Wesley Pub-
lishing Co., Reading, Massachusetts, 1964.

Robert B. Davis, Matrices, Functions, and Other
Topics: Text for Teachers (available from The
Madison Project, Webster College, Webster
Groves, Missouri, 63119).

Robert B. Davis, Matrices, Functions, and Other
Topics: Student Discussion Guide (available from
The Madison Project, Webster College, Webster
Groves, Missouri, 63119).

The films are:
A Lesson with Second Graders
First Lesson (grades 3-7 in an "ungraded" class)
Second Lesson (grades 3-7 in an "ungraded"
class)

Graphs and Truth Sets (2nd graders)
Experience with Fractions: Number Line and
String (2nd graders)

44

The Supplementary Algebra
and Geometry Program,

tor Grades Two Through Eight

Accumulating a List of Identities
Average and Variance (6th graders)
Axioms and Theorems (6th graders)

Complex Numbers via Matrices (7th graders)
Circle and Parabola
Dividing Fractions (4th graders)
Education Report: The New Math (grades 2-7)
Experience with Area
Experience with Empirical Probability
Experience with Fractions
Experience with Identities
Experience with Linear Graphs
Experience Estimating and Measuring Angles
Experience with Angles and Rotations
Graphing an Ellipse (7th graders)
Introduction to Truth Tables and Inference
Schemes

Limits (8th graders)
Matrices (5th and 6th graders)
Postman Stories (6th and 7th graders)
Derivation of the Quadratic FormulaFirst
Beginnings
Derivation of the Quadratic FormulaFinal
Summary
Solving Equations with Matrices (6th graders)
Weights and Springs
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The Madison Project Personnel

Director: Professor Robert B. Davis,
Syracuse University and Webster College
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Webster College
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The Nerinx Hall ninth-graders who took the
course described in this report had no previous
history of Madison Project work, nor of any other
"new" mathematics curriculum. This, however,
is somewhat unusual in Project work. In general,
the Madison Project attempts to follow the same
students for as many years as possible. Any serious
differences among curricula must surely relate to
long-term differences in student growth and atti-
tudes, rather than to short-term effects. In order
to help identify the various classes, they have been
designated by letters. A portion of this listing is
included here:

Class A. Began study of Madison Project ma-
terials in 5th grade, during the 1959-1960 academic
year. In June, 1964, they are 9th graders.

Name tags read : "Lex," "Bruce," "Geoff," "Jeff,"
"Ann," "Sarah," "Debby H.," "Ellen," etc.

In grade 8 this class studied the limit of a sequence,
and made the experimental film entitled "Limits."
Other films: Graphing an Ellipse, and Complex
Numbers via Matrices.

Class B. Began the study of Madison Project
materials as 4th graders, during the academic
year 1959-1960. In June, 1964, they are finishing
the 8th grade.

Name tags read : "Beth," "Jean-Anne," "Toby,"
"Mark," "Flint," etc.

They appear, with Class C, in the film entitled
Matrices. When this film was made, Class B were
6-th graders.

APPMEM

Identification of Classes
That Appear on Films

Class C. Began the study of Madison Project
materials when they were 3rd graders, during the
academic year 1959-1960.

Name tags read: "Jeff," "Ricky," "Mary,"
"Pam," "Lilli," "Windy," "Jono," "Geoff,"
"Greg," "Kris," "Val," "Miklos," "Jill,"
"Jennifer," etc.

Films include: Matrices (with Class B), Axioms
and Theorems, Average and Variance, Weights and
Springs, Solving Equations with Matrices.

For information on Classes D-M, inclusive, please
refer to:

Robert B. Davis, Report on Madison Project
Activities, September 1962-November 1963. Re-
port submitted to the National Science Founda-
tion, December 16, 1963. Copies available from
the Madison Project.

Class N. This is the Nerinx Hall 9th grade class
discussed in the present report. They began the
study of Madison Project materials in September,
1963, when they were in grade nine.

Name tags read: "Bev," "Marybeth," "Pat C.,"
"Carol," "Michele," "Pam," "Pat D.," "Susie,"
"Nancy F.," "Suzi," "Maureen," "Eileen,"
"Donna," "Kathy V.," "Kathy W.," "Cathy,"
"Regina," "Karen," "Chris Hebert," "Sandy,"
"Pat H.," "Chris Hohl," "Kathy H.," "Kathy
K.," "Marian," "Clare," "Mary Catherine,"
"Patty," "Mary Ann," "Janice," "Nancy 0."

Class N made films on the following dates: De-
cember 21, 1963, May 9, 1964, and May 23, 1964.
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This class, designated as "Class N" (see Appendix
C), has made the following films during the
academic year 1963-64, while in grade nine:

I. Recording session December 21, 1963

1. (no official title assigned as yet) Video Tape
Number 35. Taping Session at KETC-TV, St.
Louis, Missouri, Saturday, Dec. 21, 1963. There
are two topics in this lesson, which runs for 59
minutes. The first topic is concerned with selection
of algebraic axioms and selection of rules of logic,

with the subsequent proofs of these theorems:

a) (A + B) X (C + D) = (D + C) X (B + A)

b) 2 + 2 = 4
c) A + (B X C) = (C X B) + A

The second topic is some work with implication,
contradiction, and uniqueness, based upon a
sophisticated version of David Page's Hidden

Numbers.

2. (no official title assigned as yet) Video Tape
Number 36. Taping Session at KETC-TV, St.
Louis, Missouri, Saturday, Dec. 21, 1963.

There are two topics on this tape, which runs 54

minutes. The first topic continues the axiomatic
algebra from Video Tape Number 35, with em-
phasis upon theorems involving additive inverses,
including the theorem

The second topic deals with truth tables, and with
the mapping of the Cartesian product CU X into
1.), where '0 is the "truth value space,"

`t.) = IT, FI.

3. Negative One Times Negative One Equals Posi-
tive One. Video Tape Number 37, recorded at
KETC, St. Louis, Dec. 21, 1963. This lesson in-
cludes three approaches to the statement

1 X 1 = +1.
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The three approaches are:

a) use of a "model" ("postman stories")

b) an axiomatic proof of the theorem

c) an approach via "extension of a definition,"
using linear graphs, following a suggestion
of Paul Rosenbloom.

II. Recording Session May 9, 1964
(KETC, St. Louis)

4. Quadratic Equations. A lesson on the derivation
of the quadratic formula, (Video Tape Number 43)

5. Introduction to Infinite Sequences. This is the
first time these students encounter this topic. It
arises out of two monotonic sequences related to

which in turn arises out of the attempt to
achieve a general quadratic formula, (Video Tape
Number 44)

HI. Recording Session May 23, 1964
(KETC, St. Louis)

6. TVhat is Convergence? This continues the work
on infinite sequences which was begun on V.T.
Number 44. The approach is somewhat similar to
the "What's My Rule?" approach to functions:
the teacher associates numbers with various
sequences, or else declines to do so (saying "that
sequence is divergent"), and the students are
asked to describe, as precisely as they can, the
procedure that the teacher is using. (Video Tape
Number 46)

7. Bounded Monotonic Sequences. This continues
the work on sequences from Video Tapes 44 and
46. Two of the students decide that every bounded
monotonic sequence converges, and another stu-
dent decides that, since it seems unlikely that this
could ever be proved from CLA, DL, etc., it needs

to be added as an additional axiom. (Video Tape
Number 47)

S. Introduction to the Complex Plane. Matrix names
are given to points of E2. (Video Tape Number 48)



It is becoming apparent that some of the differ-
ences in mathematics teaching are largely differen-
ces in objectives. The linguistic resources available
for a discussion of objectives seem inadequate to
the task, but we (perhaps unwisely) include a
few remarks on the matter.

Within the more narrowly "mathematical" or
"technical" abilities that we seek to develop, we
would include these :

a) The ability to discover pattern in abstract
situations, and (where possible) enough rele-
vant experience to have good judgment in
selecting the most significant patterns;

b) The ability to use independent creative ex-
plorations to extend "open-ended" mathe-
matical situations. Cf., for example, the
works of Polya, and the booklet Supplemen-
tary Problems for 18.01, by A. Mattuck
(1963).2 Professor E. J. McShane of the
University of Virginia has cited, as an ex-
cellent textbook problem in mathematics, the
following, which is quoted in full:

Cf. the article: Robert B. Davis, "Report on the Madison
Project," Science Education News (1962), December,
pp. 15-16 (available from the American Association for
the Advancement of Science). Cf. also Bert Y. Kersh,
"Learning by discovery : what is learned?" The Arith-
metic Teacher, Vol. l 1, No. 4 (1964), April, pp. 226-232.

" Available from the Mathematics Department, Massa-
chusetts Institute of Technology.
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Some Behavioral Objectives of
The Madison Project Teaching

A pile of coal catches on fire.

c) The possession of a suitable set of mental
symbols that serve to picture mathematical
situations in a pseudo-geometrical pseudo-
isomorphic fashion, somewhat as described
by Polya, Leibnitz, and the psychologist
Tolman.' (This is the kind of mental imagery
that permits one to "visualize" filbert space,
to "see" orthogonal functions, etc.) ;

d) A good understanding of fundamental mathe-
matical conceptsi.e., those that are opera-
tionally and organizationally fundamental,
not those that are "logically fundamental."
We would include such concepts as: variable,
function, Cartesian co-ordinates, open sen-
tence, truth set, matrices, implication, con-
tradiction, axioms and theorems, uniqueness,
mapping or transformation, linearity, etc. ;

e) Reasonable mastery of important techniques;

f) Knowledge of mathematical facts;

g) Ability to read mathematics.

In addition to the objectives listed above, there

3 Cf. Edward Chace Tolman "Cognitive Maps in Rats
and Men," Chapter 19 of the volume Behavior and
Psychological Man, University of California Press, 1958.

4 Cf. Walter J. Sanders, "The use of models in mathe-
matics instruction," The Arithmetic Teacher, Vol. 11,
No. 3 (1964), March, pp. 157-165.



are some broader or more general behavioral
attributes which Madison Project teachiLlg seeks
to foster. These include:

a) A belief that mathematics is discovtrable. (In-
deed, our "ideal" student would probably
be a sceptic who believed very little on
authority, but who KNEW that mathe-
matics is discoverable because he was in the
habit of seeing it discovered every day in
his classroom.)

b) A realistic assessment of one's own personal
proficiency in discovering mathematics, and
a generally positive feeling toward the pros-
pect of further personal growth in this
direction.

e) A personal recognition of the "open-ended-
ness" of mathematics.

d) Honest and wise personal self-critical ability.
(That student is most hopelessly lost who
"knows not, and knows not that he knows
not.")

e) A personal commitment to the valuein its
proper placesof abstract rational analysis.
(We would not wish to turn out former
students who would say "Oh, that's all a
lot of theory," or who, in personal, political,
or business matters cast rationality to the
winds.)

L

(continued)

f) Recognition of the valuable role of "educated
intuition."

g) A feeling that mathematics is "exciting" or
"challenging" or "fun" or "rewarding" or
"worthwhile." This includes a feeling that
the study of mathematics for its own sake is
worthwhile and understandable as a human
activity, and that the relevance of mathe-
matics to the rest of life is often considerable.

Actually, there is another objective which is both
mathematical and cultural: we would wish the
student to come to know mathematics as a part
of his cultural heritage. This involves a skillful
and rare combining of mathematical concepts,
dilemmas, and historical breakthroughs, with a
cultural history of mathematics. We would ser-
iously claim that this kind of view of one's
cultural heritage goes toward answering "who
am I" and "who are we who live in the United
States in 1964?" Unfortunately, we do not claim
great achievements in this direction for our own
teaching, but this over-view of mathematics is
one of our objectives. The student should come to
know, as quickly as possible, "what is mathe-
matics in 1964" and "how did it get this way?"

The highest achievement toward this instructional
goal of which we are presently aware is:

Eves and Newsom, An introduction to the Foun-
dations and Fundamental Concepts of Mathe-
matics, Holt, Rinehart, and Winston, 1964.



BIBLIOGRAPHY



Allendoerfer, Carl B., and Oakley, Cletus O. PRINCIPLES OF PHEMATICS. McGraw-Hill, Inc., New York, 1963.

Apostol, Tom M. CALCULUS, VOLUME I. Blaisdell Publishing Co., New York, 1961.

Birkhoff, Garrett, and Mac Lane, Saunders. A SURVEY OF MODERN ALGEBRA. Macmillan Co., New York, 1959.

Brumfiel, Charles F., Eicholz, Robert E., and Shanks, Merrill E. ALGEBRA 1. Addison-Wesley, Inc., Reading,
Massachusetts, 1961.

Cogan, E. J. "The Handmaiden Comes of Age," AMERICAN MATHEMATICAL MONTHLY, Vol. 70, No. 5 (1963),
pp. 554-560.

Davis, Robert B. "Solving Problems and Constructing SystemsQuadratic Equations and Vectors." Report of an
Orientation Conference for SMSG Experimental Centers, Chicago, Illinois, September 19, 1959, pp. 97-101.

Davis, Robert B. "Report on the Madison Project," SCIENCE EDUCATION NEWS (December, 1962), pp. 15-16 (a
publication of the American Association for the Advancement of Science).

Davis, Robert B. THE MADISON PROJECT: A BRIEF INTRODUCTION TO MATERIALS AND ACTIVITIES.
The Madison Project, 1962.

Davis, Robert B. "The Evolution of School Mathematics," JOURNAL OF RESEARCH IN SCIENCE TEACHING,
Vol. 1 (1963), pp. 260-264.

Davis, Robert B. "Report on the Syracuse University-Webster College Madison Project," AMERICAN MATHEMATI-
CAL MONTHLY, Vol. 71, No. 3 (March, 1964), pp. 306-308.

Davis, Robert B. DISCOVERY IN MATHEMATICS. Addison-Wesley, Inc., Reading, Massachusetts, 1964.

Davis, Robert B. "The Madison Project's Approach to a Theory of Instruction," The Madison Project, 1964.

Davis, Robert B. MATRICES, LOGIC, AND OTHER TOPICS. Addison-Wesley, Inc., Reading, Massachusetts (in
preparation).

Eves, Howard, and Newsom, Carroll V. AN INTRODUCTION TO THE FOUNDATIONS AND FUNDAMENTAL
CONCEPTS OF MATHEMATICS. Holt, Rinehart, and Winston, New York, 1964.

Exner, Robert M., and Rosskopf, Myron F. LOGIC IN ELEMENTARY MATHEMATICS. McGraw-Hill, New York,
1959.

Fletcher, T. J. "Models of Many-Valued Logics," THE AMERICAN MATHEMATICAL MONTHLY, Vol. 70, No. 4
(1963), pp. 381-391.

GOALS FOR SCHOOL MATHEMATICS. The Report of the Cambridge Conference on School Mathematics. Houghton
Mifflin Co., Boston, Mass., 1963.

Haag, Vincent. STRUCTURE OF ALGEBRA. Addison-Wesley, Inc., Reading, Mass., 1964.



Cconfinuod)

HIGH SCHOOL MATHEMATICS. The University of Illinois Committee on School Mathematics, 1210 West Springfield,
Urbana, Illinois.

INNOVATION AND EXPERIMENT IN EDUCATION. A Progress Report of the Panel on Educational Research and
Development of the President of the United States, March 1964.

Kersh, Bert Y. "Learning by discovery: what is learned?" THE ARITHMETIC TEACHER, Vol. 11, No. 4 (April, 1964),
pp. 226-232.

KM-11er, Wolfgang. THE PLACE OF VALUE IN A WORLD OF FACT. Liveright Publishing Co., 386 Park Avenue South,
New York 16, New York, 1959.

Moise, Edwin. ELEMENTARY GEOMETRY FROM AN ADVANCED STANDPOINT. Addison-Wesley, Ine., Reading,
Mass., 1963.

Newman, J. R., and Nagel, E. GODEL'S PROOF. New York University Press, 1960.

Page, David A. MANEUVERS ON LATTICES. University of Illinois Arithmetic Project, 1962.

Polya, George. HOW TO SOLVE IT. Doubleday, New York., 1957.

Polya, George. "On Learning, Teaching, and Learning Teaching," AMERICAN MATHEMATICAL MONTHLY,
Vol. 70, No. 6 (1963), pp. 605-619.

Rogers, Hartley, Jr. "An Example in Mathematical Logic," AMERICAN MATHEMATICAL MONTHLY, Vol. 70,
No. 9 (1963), pp. 929-945.

Sanders, W. J. "The use of models in mathematics instruction," THE ARITHMETIC TEACHER, Vol. 11, No. 3
(March 1964), pp. 157-165.

School Mathematics Study Group. FIRST COURSE IN ALGEBRA. Yale University Press, 1961.

School Mathematics Study Group. INTRODUCTION TO MATRIX ALGEBRA. Yale University Press, 1961

Tolman, Edward Chace. "Cognitive Mips in Rats and Men," BEHAVIOR ANDYSYCHOLOGICAL MAN, University
of California Press, 1958, Chapter 19.


